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Symmetry Vector Fields and Similarity Solutions of a 
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In the study of the formulation of Maxwellian tails the nonlinear partial differen- 
tial equation 02u/Ox O'c+Ou/Ox+ u 2 = 0 arises. We determine the Lie point sym- 
metry vector fields and calculate the similarity ans~itze. Then we discuss the 
resulting ordinary differential equations. Finally, the existence of Lie B/icklund 
vector fields is studied and a Painlev6 analysis is performed. 

I n  t he  i n v e s t i g a t i o n  o f  t he  f o r m a t i o n  o f  M a x w e l l i a n  ta i ls  the  f o l l o w i n g  

n o n l i n e a r  pa r t i a l  d i f f e ren t i a l  e q u a t i o n  ar ises:  

02U J-OU"J-u2=O (1) 

Ox 3~" 8x 

T h e  d e r i v a t i o n  o f  th is  e q u a t i o n  is as fo l lows :  The  s ta te  o f  the  gas at a 

d i m e n s i o n l e s s  t i m e  r is d e s c r i b e d  by  a d i s t r i b u t i o n  f u n c t i o n  nf(v, ~'), w h e r e  

n is t he  c o n s t a n t  n u m b e r  dens i ty ,  v is a v e l o c i t y  v a r i a b l e , r a n d  v = Iv I. T h e  

B o l t z m a n n  e q u a t i o n  in a s imp l i f i ed  f o r m  takes  t he  f o r m  

O~" f ( v ,  ,r)+ d3w dx sin X de f (v ' ,  "r)f(w', "r) (2) 

w i t h  

v ' 2 = � 8 9  (3) 

1Department of Physics, Rand Afrikaans University, Johannesburg 2000, South Africa. 
ZDepartment of Computational and Applied Mathematics, University of the Witwatersrand, 
Johannesburg 2001, South Africa. 

3Centre for Nonlinear Studies, University of the Witwatersrand, Johannesburg 2001, South 
Africa. 

717 
0020-7748/88/0600-0717506.00/0 ~) 1988 Plenum Publishing Corporation 



718 Euler e t  al. 

and 

w ' z = l ( v 2 + w z ) - � 8 9 2 1 5  (4) 

Normalized moments Mk('r) o f f  are defined by the equation 

Mk(Z) = -- 2 ( 2 f 1 2 ) k ~ + 3 / 2  ) f v2kf(v, "r) d3 v (5) 

with 

and 

Mo(~')---- 1, M,(z) ~ 1 (6) 

Mk(oo) = 1 (7) 

where k = 0, 1 , . . . .  Multiplication of (2) by v 2k and integration over v space 
leads to the infinite sequence of moment equations 

k 

dMk+ 1 ~, MmMk_m (8) 
d'r Mk = k + l m=o 

Introducing the generating function G(~:, r) for the normalized moments, 

co 

G(~, r) -= Y ,~kMk(z) (9) 
k = O  

yields 

The transformation 

 (ao )~ (lo) 

x - u(x, r = ~:G(~:, z) (11) r  

leads to (1). Equation (1) has been derived by Krook and Wu (1976). They 
also gave one similarity ansatz and the corresponding similarity solution. 
We determine the Lie point symmetry vector fields for (1). Then we calculate 
different similarity ansgtze. The resulting ordinary differential equations are 
discussed. Finally, the existence of Lie B~icklund vector fields is investigated 
and a Painlev6 test is performed. 

First we determine the Lie point symmetry vector fields. For describing 
Lie point symmetry vector fields the jet bundle technique is a suitable 
approach (Steeb, 1984; Steeb and Strampp, 1982). We consider the sub- 
manifold 

F=- ux.~+ux+u2=O (12) 
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and all its differential consequences with respect to the space coordinate. 
This means 

Fx=-- u=,~+u=,+ 2uu .=O (13) 

and so on. Let 

U=a(x,r,.) +b(x,r,u) +c(x,r,u)~ 

be a Lie point symmetry vector field. Then the corresponding vertical vector 
field is given by 

0 
V = ( - u x a - u ~ b + c ) - -  (14) 

Ou 

The invariance requirement (this means V is a symmetry vector field of  
F = 0) is expressed as 

Lq F_4 0 (15) 

where Le(" ) denotes the Lie derivative and ~ stands for the restriction to 
solution of (1). The field 17 is the extended vector field of  V. Due to the 
structure of  (1), we have only to include the terms of the form (. �9 .) O/Oux 
and ( . .  ")O/aux~ in the extended vector field V. Separating out the terms 

2 2 2 2 with the coefficients u~, Uxx, u~u~, uxu~, u~ux, uxu~, Ux, u~, u~u~, and 1, 
we find from the invariance requirement (15) 

Ob Oa Oa ob 
= 0  

Ox Or Ou Ou 

02a 02b 
Ou2-au  g=O 

oa oZa 
- - +  = 0  
ou ou or 

c32b 
= 0  

Ox Ou 
(16) 

02a 02b Ob 02c 
- - q -  - -  = 0  
8X ~U Or Ou Ou Ou 2 

Ob 02b 02c - - ~  _2u2 0 b = o  
Ox Ox Or Ou Ox Ou 

02._~a --2U 20a Ob Ore =0 
ax Or Ou Or 0 r a u  

ac a2e - - +  _ u 2 O C + u 2 O a + u z O b + 2 u c = O  
Ox Ox Or Ou Ox Or 
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Solving this set of partial differential equations, we find four symmetry 
vector fields, namely 

0 0 
X =  m T = - -  

Ox'  07" 

0 0 
S =  - x - - +  u - -  (17) 

Ox Ou 

G = e ~ O _ e - ~ u  0 
aT au 

The symmetry vector fields form a Lie algebra, as they must. We find 

[X, T] = 0, IX, S] = - X  

[X, G] =0,  [T, S ] = 0  (18) 

[ T , G ] = G ,  IS, G ] = 0  

Let us now introduce similarity ansfitze with the help of the symmetry 
vector fields given by (17). The simplest similarity ansatz is given by the 
symmetry vector fields a/ax  and a/aT. We then find the ansatz u(x,  T) = f ( s ) ,  
where s = ca x + c2 ~" is the similarity variable. Inserting this ansatz into (1) 
yields 

d2 f '  d f '  "2 ^ (19) 
ClC2 ds---7• Cl d-~t y = o 

where ClC2#0. The solution of this equation cannot be given explicitly. 
Thus, the equation is not integrable. Let us now consider the symmetry 
vector field 

0 0 [ _ x O _ + u O \  
V = C 1 - -  - -  C 3 ox+C20~ "+ Ox Ou] 

(20) 

where cl, c2, c3 e Yr The autonomous system of first-order ordinary differen- 
tial equations 

d'r dx du 
= ca -  c3x, (21) de c2, de de c 3 u 

leads to the transformation group 

r ( e )  = c2 e + To 

X ( t ? )  Cl e l  - -  c3 XO = e -c3~ (22) 
C3 C3 

u ( ~ ) = u o e C 3  ~ 
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where c 3 r 0. N o w  let ~o = s / c  and Xo = 1 with c r 0. Then we obtain  the 
similari ty var iable  

and the similari ty ansatz  

s = cr+C2Cln c 3 x - c l  (23) 
C3 C3 - -  C 1 

u(x, "r) = f ( s )  cl--  c3 (24) 
C 1 - -  C 3 X  

We now study the simplified case cl = 0 and c2 c~ c3 = 1. Then we obtain  the 
ord inary  differential equa t ion  

cf"+ (1 - c ) f ' -  (1 - f ) f  = 0 (25) 

where  f ' =- d f  ( s ) / ds. N o w  let F ( f ( s ) ) := d f  ( s ) / ds. Consequent ly  

dF 
e F t - f +  (1 - c ) F -  (1 - f ) f  = 0 (26) 

1 Boundary  condi t ions  cor responding  to (6) and (7) determine that  c =~  and 
therefore  the explicit  solut ion ( K r o o k  and Wu, 1976) of  (26) is 

F ( f ( s ) )  = 2(1 - f ) [ l  - (1 _ f )  i/2] (27) 

Equa t ion  (1) can be simplified using the t rans format ion  

2 ( x ,  ~, u(x, , ) )  = x 

T(x,  r, u(x, z)) = - e - "  (28) 

U ( X ( x ,  ,, u(x, r ) )T (x ,  r, u(x, r ) ) )=  e 'u(x,  ~) 

We thus obta in  the equa t ion  

02 [-~ ~f2 = 0 (29) 
o 2 o i  -+ 

where - 1 - - T < 0 ,  since 0 -  < ~-<oe. Under  the t rans format ion  (28) the Lie 
symmet ry  vector  fields t r ans fo rm as follows: 

0 0 

O x 0 .~2 

O'r O T O U 
(30) 

o o _2___o.+ ~ o 
+ x - - + u - - ~  

Ox Ou OX OU 

e'( ~ u O) 0 
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Let us mention that the equation a23/af~aT+ U ' = 0 ( n = 2 , 3 , . . . )  
admits the following symmetry vector fields: 

' o ' a r . -  0 3 '  o x , - l O - 0  

The simplest similarity ansatz for (29) is 

0 ( 2 ,  T) = f ( c , X  + c2 T) (31) 

which is generated by the vector fields 0/0.~ and O/OT. Then we find 

d2Y.2 
Cl c2 ~ s 2 t J  = 0 (32) 

where s = cl X + c2 T(cl ,  c2 # 0). Introducing the scaling g = (6cl c2)-1/2s and 
f = - f  yields 

a2f 6f2=0 (33) dg 2 

The general solution can be written in the form 

[ -k 2 1 g,), ~-] 
f(g) = c 2 [ ~ + s n 2 { c ( g  - (34) 

where c and g~ are arbitrary constants, sn is an elliptic function, and k 2 is 
a root of  the equation 1 -  k2+ k 4 =  0. Then the solution to (1) is given by 

f (s)  l + k  sn2{c(6clc2)-l/2(c,x-c2 e- ' -c3) ,  k} 
= - c  2 ---7--~, 2 q- (35) 

where c, Cl, c2, and c3 are arbitrary constants. 
The existence of the Lie B~icklund vector fields for equations of  the type 

a23 
a-,~" O T - F ( U )  (36) 

has been investigated by Steeb (1984). It turns out that a 2 3 / a X  a T + U" = 0 
(n =2 ,  3 , . . . )  does not admit Lie B~icklund vector fields. We have also 
performed the Painlev6 test, due to Weiss et al. (1983). Inserting the ansatz 
u oc Uo ~b" into (1) yields n = - 2  and Uo = -6~b~bx. The resonances are given 
by -1  and 6. Using computer  algebra, we find that (1) does not pass the 
Painlev6 test. With the reduced ansatz O(x, r )=x- f ( -c )  we find at the 
resonance r = 6 that the condition F(f, d f /dr , . . . )  = 0 is not satisfied identi- 
cally. The field equation a 2 U/a ,~  a 2~ + 3 "  = 0 also does not pass the Painlev6 
test for all n = 2 , 3 , . . . .  The only differential equation that passes the 
Painlev6 test is the ordinary differential equation (32). This equation also 
has the Painlev6 property (Davis, 1962). 
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