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Symmetry Vector Fields and Similarity Solutions of a
Nonlinear Field Equation Describing the Relaxation to
a Maxwell Distribution
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In the study of the formulation of Maxwellian tails the nonlinear partial differen-
tial equation 8°u/ax 9+ du/ax + u” =0 arises. We determine the Lie point sym-
metry vector fields and calculate the similarity ansdtze. Then we discuss the

™ resulting ordinary differential equations. Finally, the existence of Lie Bicklund
vector fields is studied and a Painlevé analysis is performed.

In the investigation of the formation of Maxwellian tails the following
nonlinear partial differential equation arises:
Fu  u

+—+u"=0 )]
x0T 0Ox

The derivation of this equation is as follows: The state of the gas at a
dimensionless time 7 is described by a distribution function nf(v, 7), where
n is the constant number density, v is a velocity variable, and v =|v|. The
Boltzmann equation in a simplified form takes the form

§i(—y—’L)z—f(v, 7)-&-(-3; J d3wJ

oT 0

T 2

dy sin x J de f(v', 7)f(W', 7) (2)

Q
with
2 =102+ w?) —3(v®—w?) cos y +|vXw|sin x cos & (3)

!Department of Physics, Rand Afrikaans University, Johannesburg 2000, South Africa.
2Department of Computational and Applied Mathematics, University of the Witwatersrand,
Johannesburg 2001, South Africa.
3Centre for Nonlinear Studies, University of the Witwatersrand, Johannesburg 2001, South
Africa.

717

0020-7748/88/0600-0717306.00/0 © 1988 Plenum Publishing Corporation



718 Euler et ai.
and
w?=3(v*+w?) —-3(v*— w?) cos x —|¥xw|sin x cos ¢ (4)

Normalized moments M, (7) of f are defined by the equation

M (1) =35 Bz)k‘ﬁ“ 73 J v¥f(0,7) d*v (s)

with
My(r)=1, M (7)=1 {6)

and
Mi(0) =1 (7
where k=0, 1, .... Multiplication of (2) by v** and integration over v space

leads to the infinite sequence of moment equations

M | py =L i M, M,_,, (8)

dr T k+1 .5

Introducing the generating function G(¢, 7) for the normalized moments,

Glen= 3 EMr) ©)
yields
o (. 8G 5
é—é—t(g—(?—;ntgG) =G (10)
The transformation
x=1—;§, u(x, 7) = £G(£ 7) (1)

leads to (1). Equation (1) has been derived by Krook and Wu (1976). They
also gave one similarity ansatz and the corresponding similarity solution.
We determine the Lie point symmetry vector fields for (1). Then we calculate
different similarity ansétze. The resulting ordinary differential equations are
discussed. Finally, the existence of Lie Backlund vector fields is investigated
and a Painlevé test is performed.

First we determine the Lie point symmetry vector fields. For describing
Lie point symmetry vector fields the jet bundle technique is a suitable
approach (Steeb, 1984; Steeb and Strampp, 1982). We consider the sub-
manifold

F=u, +u+u’=0 (12)
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and all its differential consequences with respect to the space coordinate.
This means
F=u_+u,+2uu, =0 (13)

and so on. Let
o] 0 2]
U=a(x,v,u)—+b(x,7,u) —+c(x, r,u) —
ax ar ou

be a Lie point symmetry vector field. Then the corresponding vertical vector
field is given by

V=(—-u,ca—uTb+c)i (14)
u

The invariance requirement (this means V is a symmetry vector field of
F=0) is expressed as

LyF20 (15)

where Ly(+) denotes the Lie derivative and & stands for the restriction to
solution of (1). The field V is the extended vector field of V. Due to the
structure of (1), we have only to include the terms of the form (- - -) 8/du,
and (- - -)3/du,, in the extended vector field V. Separating out the terms
with the coefficients u,,, Uy, U Uy, Uyll,,, U U, U, U2, UZ, Ui, and 1,
we find from the invariance requirement (15)

ax_ar_au"au°

au® gu

da d%a

a_u auaT=0
¥b
axou

(16)
Fa, &b b Fe_

dxdu dTou du ou’
ab b e 2u26b
3x  9x 37 Juox du
d’a ,8a db d’c

u =
40X oT ou o017 dTdouU

dc 3¢ dc da ab
— — =+ ur—+u —4+2uc=0
ax odxar ou ox a7
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Solving this set of partial differential equations, we find four symmetry
vector fields, namely

X=— T=—
ax ar
d a
S=-x—+u— (17)
0x ou
a
G=e"——e'u—
a ou

The symmetry vector fields form a Lie algebra, as they must. We find
[X, T]=0, [X,5]=-X
[X,Gl=0, [T, 5]=0 (18)
[T,G]l=G, [S G]=0

Let us now introduce similarity ansitze with the help of the symmetry
vector fields given by (17). The simplest similarity ansatz is given by the
symmetry vector fields 8/dx and 6/d7. We then find the ansatz u(x, 7) = f(s),
where s = ¢; x+ ¢, 7 is the similarity variable. Inserting this ansatz into (1)
yields

a’f,  df

€16, ?+ o :l;

where ¢,¢,# 0. The solution of this equation cannot be given explicitly.

Thus, the equation is not integrable. Let us now consider the symmetry
vector field

+f7=0 (19)

d d d 0
V=c¢—tce—te|—x—+tu— 20
Yox ot 3( ax au) (20)

where ¢;, ¢, ¢; € R. The autonomous system of first-order ordinary differen-
tial equations

dr dx du
-(E=cz, E;=c1—c3x, —=Cu (21)

de
leads to the transformation group

T(e)=ce+ 1,

[4 C;—C3 X
x(g)="—T—"2 7% (22)
C3 C3

u(e) =uy e%°
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where ¢; #0. Now let 7=s5/c and x,=1 with ¢# 0. Then we obtain the
similarity variable

026 C3x_C1

s=cr+——In (23)
C3 C3 - Cl
and the similarity ansatz
u(x, ) = f(s) —— (24)
Cl - C3 X

We now study the simplified case ¢; =0 and ¢, ¢/¢; = 1. Then we obtain the
ordinary differential equation

" +(1=-o)f'-(1-/)f=0 (25)
where f'=df(s)/ds. Now let F(f(s)):= df(s)/ds. Consequently

CF%;‘F(I—C)F—(l-f)f:O (26)

Boundary conditions corresponding to (6) and (7) determine that ¢ =¢ and
therefore the explicit solution (Krook and Wu, 1976) of (26) is

F(f(s))=2(1=NH1~(1~1)""] (27)
Equation (1) can be simplified using the transformation

X(x, 7, u(x, 7)=x

T(x, 7, u(x, 7)) =-e"" (28)
U(X (x, 7, u(x, 7)) T(x, 7, u(x, 7)) = e"u(x, )
We thus obtain the equation
’U -

a)zafj— U*=0 (29)

where —1= f"<0, since 0= 7 <00, Under the transformation (28) the Lie
symmetry vector fields transform as follows:

d d
——=

Ix 9X

g ~ 0
I S
ar . LaT Tl

(30)
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Let us mention that the equation 3°U/oX aT+U"=0(n=2,3,...)
admits the following symmetry vector fields:
s 8 =9 U . J
{—7;—.; PN 8. _po U 3 }
0X aT 8T n—laU GX n—1a0

The simplest similarity ansatz for (29) is
UX, T=f(. X+, T) (31)

which is generated by the vector fields 3/ 9X and 9/37. Then we find
2

d
clczzi—s-{+f2=0 (32)

where s = ¢, X+ ¢, T(cl , ¢, #0). Introducing the scaling § = (6¢, ¢;) /*s and
f=—f yields
2
f

The general solution can be written in the form
- ~k? 1
§)=c’ + 34
F§)=c [1+k2 sn*{c(5-5,), k}] (34)

where ¢ and §, are arbitrary constants, sn is an elliptic function, and k7 is
a root of the equation 1—k*+ k*=0. Then the solution to (1) is given by

I B 1
f§)=~c [1+k2+sn2{0(60102) Yex—creT~cy), k}] G

where ¢, ¢;, ¢,, and ¢, are arbitrary constants.
The existence of the Lie Backlund vector fields for equations of the type
FU
B 77 it (36)
has been investigated by Steeb (1984). It turns out that 9 U /9X o T+ U™ =0
(n=2,3,...) does not admit Lie Backlund vector fields. We have also
performed the Painlevé test, due to Weiss et al. (1983). Inserting the ansatz
uxCuy¢” into (1) yields n=—2 and uy= —6¢.¢,. The resonances are given
by —1 and 6. Using computer algebra, we find that (1) does not pass the
Painlevé test. With the reduced ansatz ¢(x, 7)=x—f{(7) we find at the
resonance r = 6 that the condltlon F , df /dt,...)=01is not satisfied identi-
cally. The field equation 6° U/eX oT+0U"=0 also does not pass the Painlevé
test for all n=2,3,.... The only differential equation that passes the
Painlevé test is the ordinary differential equation (32). This equation also
has the Painlevé property (Davis, 1962).
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